Development of Variable Stepsize Variable Order Block Method in Divided Difference Form for the Numerical Solution of Delay Differential Equations
نویسندگان
چکیده
This paper considers the development of a two-point predictor-corrector block method for solving delay differential equations. The formulae are represented in divided difference form and the algorithm is implemented in variable stepsize variable order technique. The block method produces two new values at a single integration step. Numerical results are compared with existing methods and it is evident that the block method performs very well. Stability regions of the block method are also investigated. Keywords—block method, delay differential equations, predictor-corrector, stability region, variable stepsize variable order.
منابع مشابه
A hybrid method with optimal stability properties for the numerical solution of stiff differential systems
In this paper, we consider the construction of a new class of numerical methods based on the backward differentiation formulas (BDFs) that be equipped by including two off--step points. We represent these methods from general linear methods (GLMs) point of view which provides an easy process to improve their stability properties and implementation in a variable stepsize mode. These superioritie...
متن کاملNordsieck representation of high order predictor-corrector Obreshkov methods and their implementation
Predictor-corrector (PC) methods for the numerical solution of stiff ODEs can be extended to include the second derivative of the solution. In this paper, we consider second derivative PC methods with the three-step second derivative Adams-Bashforth as predictor and two-step second derivative Adams-Moulton as corrector which both methods have order six. Implementation of the proposed PC method ...
متن کاملA numerical approach for variable-order fractional unified chaotic systems with time-delay
This paper proposes a new computational scheme for approximating variable-order fractional integral operators by means of finite element scheme. This strategy is extended to approximate the solution of a class of variable-order fractional nonlinear systems with time-delay. Numerical simulations are analyzed in the perspective of the mean absolute error and experimental convergence order. To ill...
متن کاملDiscrete Galerkin Method for Higher Even-Order Integro-Differential Equations with Variable Coefficients
This paper presents discrete Galerkin method for obtaining the numerical solution of higher even-order integro-differential equations with variable coefficients. We use the generalized Jacobi polynomials with indexes corresponding to the number of homogeneous initial conditions as natural basis functions for the approximate solution. Numerical results are presented to demonstrate the effectiven...
متن کاملThe new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
متن کامل